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Abstract

The use of non-linear mixed effects models to describe dissolution data has been evaluated. A theoretical part is
included to introduce this approach to scientists who are not familiar with this type of statistics. The standard settings
of the statistical software package (S-plus) are used as much as possible. Several mathematical functions like the
Weibull, logistic, first-order and Gompertz are employed as basis for the non-linear mixed effects models. Examples
are given using dissolution data of immediate and extended release tablets. The results are compared with those
obtained using linear mixed effects models. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The in vitro dissolution test is an important
element in the development and quality control of
solid oral dosage forms (tablets and capsules). In
case of certain scale-up and post-approval
changes (SUPAC), the Food and Drug Adminis-
tration (FDA) even allows it to replace the costly
in vivo experiments by in vitro dissolution tests
(FDA Guidance for Industry, 1995, 1997). In
general, a reference and a test batch have to be

compared with each other. Dissolution data are
obtained by measuring at certain time points the
amount of the active substance released in the
dissolution medium. To evaluate these dissolution
data, several methods have been described which
can be divided into ANOVA-based, model-inde-
pendent and model-dependent methods (Polli et
al., 1996).

The ANOVA-based procedures are sometimes
also classified as model-independent (Polli et al.,
1996). This can be somewhat confusing since they
make use of an underlying model (Adams et al.,
2001b). However, the results can not be used to fit
a curve through the measured data points and so
these methods are neither considered as model-
dependent.

* Corresponding author. Tel.: +32-2-477-4723; fax: +32-
2-477-4735.

E-mail address: eadams@fabi.vub.ac.be (E. Adams).

0378-5173/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0 378 -5173 (02 )00127 -8

mailto:eadams@fabi.vub.ac.be


E. Adams et al. / International Journal of Pharmaceutics 240 (2002) 37–5338

The FDA proposes the calculation of the f2 or
similarity factor, originally introduced by Moore
and Flanner (1996). This model-independent ap-
proach can be computed as:

f2=50× log
��

1+
1
n

�
n

t=1

wt(Rt−Tt)2n−0.5

×100
�
(1)

with Rt and Tt the average percentage dissolved at
time t (for t=1, 2,…, n) for the reference and test
set, respectively; wt is an optional weight factor
which is usually set equal to 1. When both sets are
equal, f2=100. The FDA allows an empirically
determined 10% average difference at each sample
time point, yielding a f2 factor of 50. So, two sets
are considered pharmaceutically equivalent when
the f2 factor lies between 50 and 100. Other
model-independent techniques are based on the
Mahalanobis distance (Tsong et al., 1996), the
area under the curve (Anderson et al., 1998) or
principal component analysis (Adams et al.,
2001a).

The model-dependent methods all rely on a
curve fitting procedure. Different mathematical
functions have been used to model the observed
data (Costa and Sousa Lobo, 2001). A distinction
can be made between linear (zero-order, Higuchi,
Hixson-Crowell, quadratic, polynomials) and
non-linear models (first-order, Weibull, Ko-
rsmeyer-Peppas, logistic, Gompertz). Some of
these models like Hixson-Crowell and Higuchi,
are derived from the theoretical concepts of the
dissolution process. Since the latter can be com-
plicated, it is often difficult to describe it mathe-
matically in a correct way. Hence, empirical
equations like the Weibull have proven to be
more adequate. The purpose of using mathemati-
cal models is that they facilitate the analysis and
interpretation of the observed data because they
describe the dissolution profiles as a function of
only a few model parameters that can be statisti-
cally compared. A drawback is that these models
are rather rigid and none of them is really suitable
to fit all kinds of dissolution curves. In general,
the Weibull is found to be the most successful
(Sathe et al., 1996; Polli et al., 1997; Yuksel et al.,
2000).

Another possibility to fit dissolution profiles is
the use of mixed effects models. This approach is
considered as superior to other modelling tech-
niques since it takes into account the covariance
structure of the data. Also here a distinction can
be made between linear mixed effects (LME) and
non-linear mixed effects (NLME) models. The
evaluation of dissolution profiles by LME models,
including an extensive theoretical part, has been
described recently by Adams et al. (2001b). Using
the standard settings of the statistical software
(S-plus), convergence is not always reached and it
is not easy to model information left in the resid-
uals. On the other hand, LME models allow to
analyse the dissolution data very accurately and
are much more discriminative than the f2 factor.
An example of the application of NLME models
to dissolution data can be found in Crowder
(1996). Although the results are interesting, Crow-
der’s procedure is difficult to implement in prac-
tice by people who are not familiar with NLME
models since non-conventional statistical software
is used.

In this paper the performance of non-linear
mixed effects models is examined using the com-
mercially available software package S-plus. The
theoretical part, included to make the technique
more accessible to non-statisticians, is followed by
the analysis of real pharmaceutical data. Several
mathematical functions were tried as starting
point for the NLME models.

2. Theory

2.1. Linear �ersus non-linear models

Linear models are in essence often polynomial
functions that are linear in their parameters. One
has to keep in mind that for these models the
conclusions are only valid within the observed
data range (Pinheiro and Bates, 2000). Non-linear
models on the other hand provide more reliable
predictions for responses outside the observed
range of the data. Another difference between
both types is that non-linear models can be mech-
anistic, i.e. based on a (theoretical) model describ-
ing the underlying mechanism that produces the
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data. As a consequence, the non-linear model
parameters then have a more physical interpreta-
tion than the linear ones. A non-linear model
usually contains also fewer parameters than a
linear one. However, non-linear models are more
computationally intensive and require starting es-
timates for the fixed effects coefficients. It is im-
portant to note that it is not always easy to
choose reasonable values for these estimates and
poor starting values may result in calculations
that do not converge.

2.2. Mixed model analysis

Mixed effects models incorporate both fixed
and random effects. Fixed effects are parameters
associated with chosen, repeatable levels of exper-
imental factors. Random effects are instead asso-
ciated with experimental units drawn at random
from a population. Applied to the dissolution
data, a number of tablets are taken at random
from each batch (=population). During the dis-
solution test, the percentage of drug dissolved is
measured for each selected tablet at certain, previ-
ously determined, time points. So, ‘batch’ and
‘time’ are fixed factors while ‘tablet’ is a random
one.

When two or more datasets have to be com-
pared with each other, one can use one set as the
reference, calculate confidence limits and check
whether the test set meets these requirements.
Another possibility is to compute the parameter
differences between the data sets and examine if
they differ significantly from zero or not. The
latter approach is recommended when using
mixed effects models.

2.3. NLME models

Although a lot of mathematical models have
been described to fit dissolution curves, only the
most ‘promising’ ones were selected to be trans-
lated to NLME models. As mentioned in the
introduction, the dissolution process is difficult to
describe pure theoretically and empirical functions
give often better results.

2.3.1. Weibull
The Weibull function is often found to be the

best choice to fit dissolution data:

X(t)=X(�)× [1−exp(−�t�)] (2)

with X(t) the percentage drug dissolved at time t,
X(�) the percentage drug dissolved at infinite time,
� the scale factor and � the shape factor.

X(�) is usually set equal to 100%. The two
non-linear model parameters to be determined
and interpreted are � and �. The scale factor �

corresponds to the time scale of the process.
Parameter � describes the shape of the profile:
exponential (�=1), sigmoid (��1) or parabolic
with a higher initial slope compared to the expo-
nential (��1) (Langenbucher, 1972).

Model Eq. (2) is usually used to fit the mean
profiles of each batch. Consequently, one has no
idea about the behaviour of the separate tablets in
a batch or in other words, the random effects are
ignored. The application of a NLME model
solves this problem. When model Eq. (2) is trans-
lated to a non-linear mixed effect model:

yij=X(�)× [1−exp(− (�0+�1Bi+ai)t ij
(�0+�1Bi+bi ))]+�ij

(3)

with the assumptions: ai, bi�N(0, D), �ij�
N(0, �i) and a1,…, aT, b1,…, bT, �1,…, �T indepen-
dent (with T the number of tablets).

This equation must be interpreted as follows: yij

the percentage dissolved at time point j for tablet
i ; �0 and �0 the fixed effects parameters for the
reference set; �1 and �1 the differences between
the fixed effects parameters for the reference and
the test set; ai and bi the random effects associated
with tablet i ; Bi the indicator variables (0 if tablet
i belongs to the reference and 1 if to the test set)
and �ij the residual components or random errors.

So, in this mixed effects model, the fixed effects
(�0 and �0 for the reference batch; �0+�1 and
�0+�1 for the test batch) represent the mean
values of the parameters for each batch. The
deviations of the individual coefficients of tablet i
from these mean values are represented as the
random effects (ai and bi). The random effects
and errors are assumed to be normally distributed
with mean 0 and covariance matrix D and �i,
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respectively. Random effects corresponding to dif-
ferent tablets are assumed to be independent of
each other and of the random errors.

The problem with the Weibull function is the
choice of the initial estimates for the fixed effects.
For �, one can have a rough idea based on the
shape of the profile: �=1, ��1 or ��1 (see
above). Estimators for � are more difficult to
determine. In the literature, values for � vary
between 0.03 and 2.1 and for � between 0.4 and
1.75 (Sathe et al., 1996; Sathe et al., 1997; Polli et
al., 1997). Of course, these parameter values also
depend on the time units (hours, minutes) used.

2.3.2. Logistic
The logistic function is also one of the better

choices to fit dissolution curves:

X(t)=
�

1+exp[(�− t)/� ]
(4)

with X(t) the percentage of drug dissolved at time
t ; � the value of the horizontal asymptote as t
approaches infinity (t��); � the time at which
X(t)=�/2; � the scale parameter on the time axis
which represents the distance on the time axis
between � and the point where the response is
�/(1+e−1)�0.73�. The meaningful graphical in-
terpretation of the model parameters facilitates
the choice of the starting estimates: for � a value
of 100 (%) is reasonable, for � the (average) time
at which 50% of the drug is dissolved (�dissolu-
tion rate) and for � the difference between the
(average) times at which 50 and 73% of the drug
are dissolved, respectively.

The non-linear mixed effect version of model
Eq. (4) is:

yij=
�0+�1Bi+ai

1+exp[((�0+�1Bi+bi)− t)/(�0+�1Bi+ci)]

+�ij (5)

The interpretation is similar as for model Eq. (3):
yij the percentage dissolved at time j for tablet i ;
�0, �0 and �0 represent the values for the fixed

effects parameters of the reference set; �1, �1 and
�1 the differences between the fixed effects
parameters of the reference and test set; Bi indi-
cates whether tablet i belongs to the reference
(Bi=0) or the test batch (Bi=1). Deviations of
individual tablets are represented by the random
effects ai, bi and ci, which are assumed to be
independent and normally distributed with mean
0 and covariance matrix D. The residuals �ij are
assumed to be normally distributed with mean 0
and covariance matrix �i. They are also supposed
to be independent from each other and from the
random effects.

2.3.3. First-order
Analogous to the previous models, the mixed

effects version of the first-order model to fit disso-
lution curves can be represented as:

yij= (�0+�1Bi+ai)× (1−e− (�0+�1Bi+bi )t)+�ij

(6)

The interpretation is similar as above. The as-
sumptions concerning the random effects and
residuals are also made here.

Since (�0+�1Bi+ai) corresponds to the value
of the horizontal asymptote as in the logistic
model, a reasonable starting value for �0 is 100 (�1

can be given 0 as starting value, supposing there is
no difference between the two sets). Starting esti-
mates for �0, which reflects the release rate of the
reference set, are more difficult to derive. Values
between 0.03 and 0.15 are mentioned (Polli et al.,
1997; Yuksel et al., 2000). As for the Weibull
function, the �-values are also dependent on the
time units used.

2.3.4. Gompertz
The Gompertz function can be written in its

mixed effects form as:

The interpretation and assumptions are the same
as in the previous sections. As in the logistic and
first-order function, (�0+�1Bi+ai) corresponds

yij= (�0+�1Bi+ai)×exp[−exp(− (�0+�1Bi+bi))(t− (�0+�1Bi+ci)))]+�ij (7)
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to the horizontal asymptote when t��, (�0+
�1Bi+bi) depends on the curvature of the
profile and (�0+�1Bi+ci) describes the rising
part (�dissolution rate) of the curve. Also here
raises the problem of the initial starting esti-
mates. As before, for �0 ‘100’ is reasonable. Pos-
sible starting values for �0 and �0 were
determined experimentally.

2.4. Estimation of the model parameters and
comparison of models

For the estimation of the model parameters
an alternating algorithm is used (Pinheiro and
Bates, 2000). It alternates between a penalised
non-linear least squares step (PNLS) and a lin-
ear mixed effects (LME) step until a conver-
gence criterion is met. In the PNLS step, the
Gauss–Newton algorithm is used to estimate the
fixed and random effects. The LME step returns
the maximum likelihood (ML) or restricted max-
imum likelihood estimators (REML) of the
model parameters using a hybrid approach of
Expectation–Maximisation and Newton–Raph-
son iterations. Several structures can be at-
tributed to the within group covariance matrix.
By default, the unstructured type is defined.

The goodness of fit of a model can be evalu-
ated using the Aikaike information criterion
(AIC). This criterion takes into account the
number of model parameters. In S-plus, the
lower the AIC value, the better the model fits.
The likelihood ratio test (LRT) is a statistical
test to decide if the difference between two
nested models is significant or not (a model is
called ‘nested’ with another if it is a special case
of the other model, e.g. the Weibull model with-
out random effects is nested in the Weibull
model with random effects).

2.5. Working procedure to fit NLME models

To avoid convergence problems due to over-
parametrisation, first a model with only fixed
effects parameters is fitted. If no convergence is
obtained, one can try other starting values. So,
essentially one starts to fit a ‘classical’ non-linear
model with no random effects parameters. To-

gether with the estimated values for the model
parameters, their significance is given in the out-
put. Next, the random effects parameters are
added individually, as well as all possible combi-
nations. For example, the Weibull can be fitted
using three different combinations of random ef-
fects: a model with only ai, one with only bi and
one with ai and bi. For some combinations how-
ever, it is possible that no convergence is
reached using the standard settings of the pro-
gram. Adapting these settings is possible, but it
can be time consuming and it is not evident for
occasional users of this software. Other starting
values can sometimes help too.

For each model that can be fitted, the AIC is
calculated and different nested models can be
statistically compared using the LRT. During
refinement of the model, i.e. the determination
of random effects that improve the model, and
for model comparison (Weibull, logistic,…), the
ML estimates must be used. Although the differ-
ences between the ML and REML estimates are
small, REML is preferred for the final parame-
ter estimates since it gives more accurate results.

The deviations of the individual tablets from
the fixed effects parameters can be represented
in a random effects plot. The model fit can be
further evaluated using diagnostic plots: the
residuals versus fitted values and the autocorre-
lation of the residuals versus lag. Following the
assumption �ij�N(0, �i), the residuals should be
homogeneously spread around the zero line. The
autocorrelation or serial correlation of the resid-
uals varies between 1 and −1: for the same
time point (lag=0) the correlation is always 1;
for time points ‘further away’ (lag�0) the val-
ues should be relatively small. It is important to
notice that some ‘artificial’ correlation for
lags�0 can be observed when the model is
somewhat deficient and not all information of
the original data is modelled. This is normally
also reflected in the residuals versus fit plot.

2.6. Software

The NLME models were studied using S-plus
2000 (Mathsoft, Seattle, WA) in the mode
Statistics � Mixed Effects � Non-linear. Unless
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otherwise mentioned, the standard settings of the
program were used.

3. Data

The NLME models were applied to two types
of dissolution profiles: one corresponding to an
immediate (data A) and another to a slow (data
B) dissolving formulation. Data A were obtained
from the industry and data B from the literature
(Tsong and Hammerstrom, 1994). The same data
were already analysed by principal component
analysis (Adams et al., 2001a) and linear mixed
effects models (Adams et al., 2001b). Both data A
and B consist of a reference and a test set. For
each set, 12 tablets were measured at different
time points.

For data A, measurements were performed at
15, 30, 45 and 60 min. The 12 dissolution profiles
of the reference set, together with three profiles of
the test set, are shown in Fig. 1. Notice that the
percentages at the first time point (15 min) are
already relatively high. The f2 factor for these
batches amounts to 83 so that they can be consid-
ered as pharmaceutically equivalent according to
the present FDA guidelines ( f2�50).

For data B, the percentages dissolved were

Fig. 2. Data B: the 12 dissolution profiles of the reference set
with dissolution profile 2 indicated with ‘–�–’ and profile 9
with ‘–�–’.

determined at 1, 2, 3, 4, 6, 8 and 10 h. So, these
time points are unequally spaced. Fig. 2 shows
that the curves of Br increase more gradually than
the curves of data A. Since the f2 factor for data
B is 64, both batches are also considered as
pharmaceutically equivalent.

Remark that neither for data A nor for data B
measurements are performed at time point 0.
Consequently, the point (0, 0) is not used in the
model calculations.

4. Results and discussion

4.1. Data A

4.1.1. Weibull
As described in the working procedure, model

Eq. (3) without random effects parameters is fit
by ML. X(�) is set equal to 100 (%). The resulting
parameter estimates for �0 and �0 yield a good fit
for the mean profile of the reference batch while
the combination with �1 and �1 does the same for
the test batch. The AICML amounts to 630.4. The
differences indicated by parameters �1 and �1 are
found not to be significant at the 5% level (P=
0.1255 and 0.1162, respectively) so that both
batches can be considered similar. Next the ran-
dom effects are included to see whether a better fit

Fig. 1. Data A: the 12 dissolution profiles of the reference set
with dissolution profile 8 indicated with ‘–�–’. Dissolution
profiles 2 and 7 of the test set are indicated by ‘- -�- -’ and
profile 11 by ‘- -+ - -’.
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is obtained. Inclusion of ai gives an AICML of
516.4, of bi 501.3 and of ai and bi 483.8. According
to the LRT, the latter model is clearly the best.
The final REML estimates are given in Table 1.
This table also contains the P-values for �1

(0.0077) and �1 (0.0278). They now indicate that
both batches are different at the 5% level. A rather
strong negative correlation (−0.834 for both the
reference and the test set) is found between the
scale (�) and the shape factor (�) of the Weibull
equation. This means that when � increases, �

decreases and vice versa. The behaviour of the
individual tablets is shown in the random effects
plot of Fig. 3(I). Tablet 8, which has the lowest
profile in Fig. 1, has the lowest b parameter of the
reference set. For the test set, tablets 2 and 7 (14
and 19 in Fig. 3) show the most deviant values in

a. It can be seen in Fig. 1 that their dissolution
starts relatively low and ends relatively high. Fig.
4(I) shows the diagnostic plots. The spread of the
residuals versus the fitted values is rather homoge-
neous although some � -shape can be recognised.
This indicates that some information is still left in
the residuals. This is also reflected in the autocor-
relogram where the relatively high value at lag 2
rather indicates a somewhat deficient model than
an important correlation.

The influence of taking other values than 100
for X(�) is also examined. When X(�) is consid-
ered as an additional parameter to be determined,
no convergence is obtained. Also when X(�) is set
to 95 instead of 100, no convergence is obtained.
When 105 is used, convergence is reached, but the
AIC increases to 526.2.

Fig. 3. Plot of the random effects ai, bi and eventually ci for the tablets of data A (1–12: reference, 13–24: test set); (I) Weibull, (II)
logistic, (III) first-order and (IV) Gompertz.
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Fig. 4. Diagnostic plots for data A: residuals versus fitted values (left) and autocorrelation of the residuals (right); (I) Weibull, (II)
logistic, (III) first-order and (IV) Gompertz.
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4.1.2. Logistic
Fitting model (5) without random effects

parameters yields an AICML of 627.2. No signifi-
cant differences are observed between both
batches since the P-value for �1=0.3161, for
�1=0.8763 and for �1=0.6659. Next the random
effects are added to the formula. Seven combina-
tions are possible: (ai), (bi), (ci), (ai bi), (ai ci), (bi

ci) and (ai bi ci). The model including all random
effects is found to be the best (AICML: 400.3). The
final REML estimates for the parameters are also
shown in Table 1. The P-values indicate that both
batches do not differ in � or � (both batches
approach the same asymptote for t�� and also
their dissolution rate is similar). The interpreta-
tion of the P-value for �1 depends more on the the
level of significance that is applied: �1 is not
significant at a 0.1% level, but it is at a 1% level.
However, since the � parameter describes mainly
the behaviour of the curves between 50 and 73%
of their maximum dissolution, it is not the most
relevant parameter of the logistic function to de-
cide that two sets are different or not. Remark
also that the measurements at the first time point
are already above 73%. The random effects plot is
illustrated in Fig. 3(II). The low profile of tablet 8
of the reference set (Fig. 1) can be clearly recog-
nised in a. This is logical because the numerator
in Eq. (5) corresponds to the horizontal asymp-
tote when t��. Tablets 2 and 7 of the test set
(14 and 19 in Fig. 3(II)) are clearly deviating in b.
Since this parameter describes when the curve
reaches half of its asymptotic height, it can be
correlated to the shape of both profiles shown in
Fig. 1. As already mentioned for � above, also the
plot for c (the random effect parameter of �)
contains no important information. The diagnos-
tic plots can be found in Fig. 4(II). The residuals
show a dispersing pattern (fan shape) indicating
that the lower percentages (measured at the first
time point) are better fitted than the higher ones
(later measurement times). The autocorrelation of
the residuals is good.

4.1.3. First-order
When model (6) is fitted without random effects

an AICML of 627.5 is obtained. The P-values of
�1 (0.2875) and �1 (0.1310) indicate that both

batches are equivalent. Adding the random effects
gives the best results when both ai and bi are
included (AICML: 413.3). The parameter values,
estimated by REML, are given in Table 1. Both
batches can still be considered as similar (see
P-values for �1 and �1). The behaviour of each
tablet is illustrated in Fig. 3(III). As expected,
tablet 8 of the reference set is recognised in a
(�horizontal asymptote). Tablets 2 and 7 of the
test set (14 and 19 in Fig. 3(III)) are less striking
than in the previous plots. In the test set, the
b-value for tablet 11 (23 in the figure) is high and
indicates a fast release rate. This is confirmed by
the dissolution curve in Fig. 1. The diagnostic
plots of Fig. 4(III) do not show something special:
the residuals are rather homogeneously spread
and only the autocorrelation at lag 2 is relatively
large (similar to the autocorrelogram of the
Weibull).

4.1.4. Gompertz
The AICML for model Eq. (7) without the ran-

dom effects parameters amounts to 627.2. Ac-
cording to the P-values for �1 (0.3187), �1

(0.8346) and �1 (0.7180), both sets can not be
considered different. Adding the random effects,
the model with random effects for all fixed effects
is also here found to have the lowest AICML:
398.0. For some combinations of random effects
(only ci or bi ci), the calculations do not converge.
The REML estimates for the parameters of the
best Gompertz model can be found in Table 1. At
a 0.1% level of significance, none of the difference
indicating parameters (�1, �1 and �1) is significant,
but at a 1% level �1 is. The random effects plot is
given in Fig. 3(IV). Tablet 8 of the reference batch
can be recognised in a (�horizontal asymptote).
Tablets 2 and 7 of the test set (14 and 19 in Fig.
3(IV)) have deviant values for c which can be
explained by the different dissolution rate. The
relatively small differences between the bi-values
indicate that all profiles have nearly the same
curvature. This is also reflected in the relatively
small standard deviation of bi (see S.D. (bi) in
Table 1). So, the most relevant differences be-
tween the tablets can be derived from ai and ci.
This also implies that the difference between both
batches indicated by �1, is not so important. The
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Fig. 5. Average percentages at each time point for the refer-
ence set of data A (�) together with the fitted profiles using
the parameters of Table 1: ‘—’ Weibull, ‘– – –’ logistic,
‘– - – - –’ first-order and ‘- - -’ Gompertz.

easily in the random effects plot of the logistic,
first-order and Gompertz than in the Weibull plot.
Also the final decision that two batches are statis-
tically similar or not, depends on the model chosen
to fit the data. According to the f2 factor of 83,
both sets can be considered as pharmaceutically
equivalent.

Compared to the classical non-linear regression,
which fits no random effects, the AICML values for
the NLME models are clearly better. For all four
model functions, the best fit is obtained when
random effects are included for all fixed effects
parameters. However, one has to be careful with
the interpretation of the results: the introduction
of random effects in the formula implies an accu-
rate fit for each tablet, but this does not necessarily
mean that the average curve is fitted better. The
NLME approach is also more discriminative since
it indicates differences between two sets that are
not recognised in the classical approach. The
NLME models can also be compared with the best
LME model, as applied by Adams et al. (2001b).
The best LME model yields an AICML of 387.2
what is marginally better than for the best NLME
model (AICML: 398.0).

An important drawback of the non-linear ap-
proach in general is that the ‘chance’ of obtaining
convergence is dependent on the choice of the
starting estimates for the parameters to be deter-
mined. In several cases, the initially chosen start-
ing values had to be adapted.

4.2. Data B

4.2.1. Weibull
Similar to data A, the Weibull model is also

examined for data B. Eq. (3) fitted with only fixed
effects, yields an AICML of 892.5. The P-values for
�1 and �1 clearly indicate that both sets are statis-
tically different (both�0.0001). The best NLME
model is that with both random effects ai and bi

(AICML: 814.3). This value can be further im-
proved by adjusting X(�). As for data A, no
convergence is obtained if X(�) is added as an
additional variable to the formula. When X(�) is
changed manually, a minimum AICML value of
772.4 is found for X(�)=120. The parameter
values, estimated by REML, are shown in Table 2.

spread of the residuals and the autocorrelation
(Fig. 4(IV)) are comparable to those obtained
with the logistic function.

4.1.5. Conclusions for data A
For data A, the model with the lowest AICML

or best fit is the Gompertz function, although the
AICML of the logistic is only slightly higher (Table
1). Since both models are not nested, they can not
be statistically compared by the LRT. The Weibull
however, which is usually assumed to give good
fittings, shows here the highest AIC value. The
four functions are also illustrated in Fig. 5, where
the fixed effects parameters of the reference set are
used to fit the average percentages. Although (0,0)
is not used in the calculations, the Weibull and the
first-order go through the origin and so simulate
better a natural dissolution profile. The two other
functions (logistic and Gompertz) transsect the
Y-axis above the origin. A consequence is that the
first measurement point is fitted better compared
to the later ones, resulting in a fan shaped ‘residu-
als versus fitted values’ plot. Tablets with a deviant
profile are not always clearly recognised in the
random effects plot of a model. For example,
tablet 8 of the reference set can be noticed more
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The P-values for �1 and �1 remain very small
(�0.0001) and indicate that both sets differ in both
the scale (�) and shape (�) factor. Compared to
data A, the correlation between � and � is not very
important here (−0.477 for the reference and
−0.471 for the test set). The random effects plot
for each tablet is given in Fig. 6(I). The most
remarkable tablet for parameter a is tablet 9 of the
reference set. It can be seen in Fig. 2 that this tablet
has the lowest profile. Concerning random effect b,
tablet 2 of the reference set attracts attention. Fig.
2 shows that the profile of tablet 2 is deviant at the
second time point. The diagnostic plots are illus-
trated in Fig. 7(I): the residuals are homogeneously
spread and the autocorrelation for lag�0 is small.

4.2.2. Logistic
Without taking care of the random effects, the

AICML of model (5) amounts to 902.4. The P-value
for �1 is 0.0051, for �1�0.0001 and for �1 0.0159.
Examining the random effects reveals that fitting all
random effects (ai, bi and ci) leads to convergence
problems. The best fit is obtained when only ai is
included in the formula (AICML: 831.2). So, the
main difference between the individual profiles is
the value of the horizontal asymptote to which each
profile approaches when the time becomes infinite.
The REML values are given in Table 2. Note that
the addition of random effects for � has also an
influence on the estimation of the fixed effects
parameters (e.g. the P-value of �1 decreases from
0.0159 to 0.0008). Even at a low level of significance
(e.g. 0.01%), both batches can not be considered as
similar because of �1 (both batches differ in their
dissolution rate). The behaviour of the individual
tablets is shown in Fig. 6(II). The lower profile of

Fig. 6. Plot of the random effects ai and eventually bi for the tablets of data B (1–12: reference, 13–24: test set); (I) Weibull, (II)
logistic, (III) first-order and (IV) Gompertz.
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reference tablet 9 can be clearly recognised in a
(�horizontal asymptote). As expected, the dip in
the profile of tablet 2 is not reflected in a. In Fig.
7(II), the residuals show a somewhat wavy pattern
which is reflected in the relatively large autocorre-
lation at lag 6. As mentioned before this is not
very relevant for the study of the correlation, but
indicates rather that the model is somewhat defi-
cient and does not fit all information included in
the data.

4.2.3. First-order
Fitting model Eq. (6) with only fixed effects

parameters resulted in an AICML of 1051.3. All
parameters are significant (P-values�0.0001) so
that both batches are statistically different. The
study of the random effects leads to convergence
problems when only bi is included. The model
with the lowest AICML (1041.9) includes only ai as
random effect. However, at a 5% level of signifi-
cance, the latter model is not significantly better
than the first one without random effects (PLRT=
0.0655). Since the model without random effects
contains less variables to be estimated, it is con-
sidered the best. The REML estimates for the
fixed effects parameters can be found in Table 2.
The estimates for the fixed effects parameters of
the first-order model including ai are nearly the
same, but the P-values for �1 and �1 are different:
the most refined model (with ai) indicates a differ-
ence between both batches (P-values �0.0001)
while the simpler model is less discriminative (P-
values 0.0010 and 0.0009, respectively). An advan-
tage of the more complex model is that deviations
of individual tablets can be traced in the random
effects plot (Fig. 6(III)). It is logical that tablet 9
has a clearly deviant value for a (�horizontal
asymptote), while the dip in the curve of tablet 2
has no pronounced influence on this parameter.
Residual plots are shown for both versions of the
first-order function (Fig. 7(III)). A similar U-
shaped profile can be noticed in the two cases. A
high autocorrelation is found at lag 6 if random
effects are included, but as mentioned above, this
is not relevant.

4.2.4. Gompertz
As in the previous examples, the model equa-

tion is first fitted using only the fixed effects
parameters (AICML: 889.8). The P-values for �1,
�1 and �1 are 0.0111, �0.0001 and 0.0465, respec-
tively. The best Gompertz model for data B is
obtained when only the random effects parameter
ai is included (AICML: 803.7). As for the logistic
function, the individual tablets differ mainly in
the asymptotic value when t��. The REML
estimates are given in Table 2. The most impor-
tant difference between both batches is found in
�1, which indicates a difference in the dissolution
rates. The random effects plot can be found in
Fig. 6(IV). As expected, tablet 9 attracts attention
and the random effect of tablet 2 is not deviant
from the other. The residuals are somewhat wavy
and the autocorrelation is good (Fig. 7(IV)).

4.2.5. Conclusions for data B
The best fitting model for data B is the Weibull

function with X(�)=120 (AICML=772.4). How-
ever, when X(�) is set equal to 100 as usual, the
AICML increases to 814.3. In this case the Gom-
pertz function shows a better fit (AICML=803.7).
In contrast with data A, it was not always neces-
sary for data B to add all random effects in the
model. The application of the first-order function
even revealed that the addition of random effects
did not improve the fit. The fixed effects parame-
ters of the four models studied are used to fit the
average percentages of the reference batch as illus-
trated in Fig. 8. The logistic and the Gompertz do
not pass through the origin (they also show simi-
lar diagnostic plots as follows from Fig. 7). Dif-
ferences between tablets are mainly observed in
the level of the asymptotic value of the profiles for
an infinite time as reflected in the ai parameter of
the logistic, first-order and Gompertz function.
The somewhat deviant percentage at the second
time point of profile 2 of the reference set can
only be recognised in the bi parameter of the
Weibull. The more refined the model, the more
discriminative it is. This is illustrated in Table 2
by the P-values of �1 and �1 for the Weibull (best
model) and the first-order (worst model). In gen-
eral, both sets differ mainly in their dissolution
rate. Notice that the f2 factor indicates that both
sets are pharmaceutically similar ( f2=64). The
AICML value of the best fitting LME model as
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Fig. 7. Diagnostic plots for data B: residuals versus fitted values (left) and autocorrelation of the residuals (right, except for III); (I)
Weibull, (II) logistic, (III) first-order and (IV) Gompertz.
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Fig. 8. Average percentages at each time point for the refer-
ence set of data B (�) together with the fitted profiles using
the parameters of Table 2: ‘—’ Weibull, ‘– – –’ logistic,
‘– - – - –’ first-order and ‘- - -’ Gompertz.

and it is not always easy to fit all information
available in the original dissolution data. The
decision that 2 batches are similar depends not
only on the model (LME, Weibull, logistic, first-
order, Gompertz, etc.) chosen, but also on the
level of significance used. At the moment, there
are no agreements between the regulatory author-
ities and the pharmaceutical industry which level
is pharmaceutically acceptable. Compared to the
f2 factor both LME and NLME models are more
discriminative and informative.
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